Quick Questions 18 Analysis of Variance

I. Copy the formulas and expressions on the right into this ANOVA summary chart.

	Varian	ce Analysis Su	immary Table	
Variance Sources	df	Sum of the Squares	Mean Squares	ANOVA
Between Treatments Within				
Treatments (error)				

SS _T	$F = \frac{MS_T}{MS_E}$	
N - t	SS _{TOTAL}	
$MS_T = \frac{SS_T}{t-1}$	t - 1	
$MS_E = \frac{SS_E}{N-t}$	SS _E	
N - 1		

- II. Answer the following fill in the blank questions.
 - A. Analysis of variance requires the populations be _____ distributed.
 - B. When using the F distribution, the numerator is always the _____ of the 2 variances.
 - C. When doing ANOVA, the numerator of the F distribution measures variance ______ the treatments.
 - D. When doing ANOVA, the denominator of the F distribution measures variance ______ the treatments.
- III. Complete the following ANOVA study concerning grade point averages randomly selected by a local college. Those using statistics software should skip to part D.
 - A. Begin by completing this chart.

/	Analysis of College Gr	Row Totals Required		
	High H.S. Grades T ₁	Medium H.S. Grades T ₂	Low H.S. Grades T ₃	for Calculations
	College Grades(X ₁) X ₁ ²	College Grades(X ₂) X ₂ ²	College Grades(X ₃) X ₃ ²	
	3.4	3.2	2.1	4
	3.5	2.8	2.5	
	3.1	3.0	2.7	V 4
$\sum X_T$				$\Sigma x =$
$(\Sigma X_T)^2$				
n				N = 9
$\frac{(\sum X_T)^2}{n}$				$\sum \left[\frac{(\sum X_T)^2}{n}\right] = \sum X^2 =$
$\sum X_T^2$		a		$\sum X^2 =$